Reverse Vaccinology: An Approach for Identifying Leptospiral Vaccine Candidates
نویسندگان
چکیده
Leptospirosis is a major public health problem with an incidence of over one million human cases each year. It is a globally distributed, zoonotic disease and is associated with significant economic losses in farm animals. Leptospirosis is caused by pathogenic Leptospira spp. that can infect a wide range of domestic and wild animals. Given the inability to control the cycle of transmission among animals and humans, there is an urgent demand for a new vaccine. Inactivated whole-cell vaccines (bacterins) are routinely used in livestock and domestic animals, however, protection is serovar-restricted and short-term only. To overcome these limitations, efforts have focused on the development of recombinant vaccines, with partial success. Reverse vaccinology (RV) has been successfully applied to many infectious diseases. A growing number of leptospiral genome sequences are now available in public databases, providing an opportunity to search for prospective vaccine antigens using RV. Several promising leptospiral antigens were identified using this approach, although only a few have been characterized and evaluated in animal models. In this review, we summarize the use of RV for leptospirosis and discuss the need for potential improvements for the successful development of a new vaccine towards reducing the burden of human and animal leptospirosis.
منابع مشابه
Leptospirosis vaccines: past, present, and future.
It is well known that Leptospira vaccine prevents the disease. However specificity for serovars limits the efficacy of killed whole cell vaccines. Leptospiral antigens that induce cross-protective immunity to the various serovars are sought as new vaccine candidates. In this paper, we have summarized both past and current findings about leptospiral antigens that are conserved among pathogenic l...
متن کاملA systematic, functional genomics, and reverse vaccinology approach to the identification of vaccine candidates in the cattle tick, Rhipicephalus microplus.
In the post-genomic era, reverse vaccinology is proving promising in the development of vaccines against bacterial and viral diseases, with limited application in ectoparasite vaccine design. In this study, we present a systematic approach using a combination of functional genomics (DNA microarrays) techniques and a pipeline incorporating in silico prediction of subcellular localization and pro...
متن کاملReverse vaccinology.
Whole-genome sequencing of bacteria and advances in bioinformatics have revolutionized the vaccinology field, leading to the identification of potential vaccine candidates without the need for cultivating the pathogen. This approach, termed "reverse vaccinology", reduces the time and cost required for the identification of candidate vaccines and provides new solutions for those diseases for whi...
متن کاملPost-Genomics and Vaccine Improvement for Leishmania
Leishmaniasis is a parasitic disease that primarily affects Asia, Africa, South America, and the Mediterranean basin. Despite extensive efforts to develop an effective prophylactic vaccine, no promising vaccine is available yet. However, recent advancements in computational vaccinology on the one hand and genome sequencing approaches on the other have generated new hopes in vaccine development....
متن کاملGenome-based approaches to develop vaccines against bacterial pathogens.
Bacterial infectious diseases remain the single most important threat to health worldwide. Although conventional vaccinology approaches were successful in conferring protection against several diseases, they failed to provide efficacious solutions against many others. The advent of whole-genome sequencing changed the way to think about vaccine development, enabling the targeting of possible vac...
متن کامل